Artwork

Contenu fourni par Real Python. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Real Python ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !

Simon Willison: Using LLMs for Python Development

1:22:04
 
Partager
 

Manage episode 462945537 series 2637014
Contenu fourni par Real Python. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Real Python ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

What are the current large language model (LLM) tools you can use to develop Python? What prompting techniques and strategies produce better results? This week on the show, we speak with Simon Willison about his LLM research and his exploration of writing Python code with these rapidly evolving tools.

Simon has been researching LLMs over the past two and a half years and documenting the results on his blog. He shares which models work best for writing Python versus JavaScript and compares coding tools and environments.

We discuss prompt engineering techniques and the first steps to take. Simon shares his enthusiasm for the usefulness of LLMs but cautions about the potential pitfalls.

Simon also shares how he got involved in open-source development and Django. He’s a proponent of starting a blog and shares how it opened doors for his career.

This episode is sponsored by Postman.

Course Spotlight: Advanced Python import Techniques

The Python import system is as powerful as it is useful. In this in-depth video course, you’ll learn how to harness this power to improve the structure and maintainability of your code.

Topics:

  • 00:00:00 – Introduction
  • 00:02:38 – How did you get involved in open source?
  • 00:04:04 – Writing an XML-RPC library
  • 00:04:40 – Working on Django in Lawrence, Kansas
  • 00:05:31 – Started building open-source collection
  • 00:06:52 – shot-scraper: taking automated screenshots of websites
  • 00:08:09 – First experiences with LLMs
  • 00:10:08 – 22 years of simonwillison.net
  • 00:18:22 – Navigating the hype and criticism of LLMs
  • 00:22:14 – Where to start with Python code and LLMs?
  • 00:26:22 – Sponsor: Postman
  • 00:27:13 – ChatGPT Canvas vs Code Interpreter
  • 00:28:23 – Asking nicely, tricking the system, and tipping?
  • 00:30:35 – More Code Interpreter and building a C extension
  • 00:32:05 – More details on Canvas
  • 00:36:55 – What is a workflow for developing using LLMs?
  • 00:39:43 – Creating pieces of code vs a system
  • 00:42:00 – Workout program for prompting and pitfalls
  • 00:53:54 – Video Course Spotlight
  • 00:55:14 – Why an SVG of a pelican riding a bicycle?
  • 00:57:48 – Repeating a query and refining
  • 01:03:00 – Working in an IDE or text editor
  • 01:05:45 – David Crawshaw on writing code with LLMs
  • 01:08:33 – Running an LLM locally to write code
  • 01:14:02 – Staying out of the AGI conversation
  • 01:16:07 – What are you excited about in the world of Python?
  • 01:18:34 – What do you want to learn next?
  • 01:19:53 – How can people follow your work online?
  • 01:20:51 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

277 episodes

Artwork
iconPartager
 
Manage episode 462945537 series 2637014
Contenu fourni par Real Python. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Real Python ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

What are the current large language model (LLM) tools you can use to develop Python? What prompting techniques and strategies produce better results? This week on the show, we speak with Simon Willison about his LLM research and his exploration of writing Python code with these rapidly evolving tools.

Simon has been researching LLMs over the past two and a half years and documenting the results on his blog. He shares which models work best for writing Python versus JavaScript and compares coding tools and environments.

We discuss prompt engineering techniques and the first steps to take. Simon shares his enthusiasm for the usefulness of LLMs but cautions about the potential pitfalls.

Simon also shares how he got involved in open-source development and Django. He’s a proponent of starting a blog and shares how it opened doors for his career.

This episode is sponsored by Postman.

Course Spotlight: Advanced Python import Techniques

The Python import system is as powerful as it is useful. In this in-depth video course, you’ll learn how to harness this power to improve the structure and maintainability of your code.

Topics:

  • 00:00:00 – Introduction
  • 00:02:38 – How did you get involved in open source?
  • 00:04:04 – Writing an XML-RPC library
  • 00:04:40 – Working on Django in Lawrence, Kansas
  • 00:05:31 – Started building open-source collection
  • 00:06:52 – shot-scraper: taking automated screenshots of websites
  • 00:08:09 – First experiences with LLMs
  • 00:10:08 – 22 years of simonwillison.net
  • 00:18:22 – Navigating the hype and criticism of LLMs
  • 00:22:14 – Where to start with Python code and LLMs?
  • 00:26:22 – Sponsor: Postman
  • 00:27:13 – ChatGPT Canvas vs Code Interpreter
  • 00:28:23 – Asking nicely, tricking the system, and tipping?
  • 00:30:35 – More Code Interpreter and building a C extension
  • 00:32:05 – More details on Canvas
  • 00:36:55 – What is a workflow for developing using LLMs?
  • 00:39:43 – Creating pieces of code vs a system
  • 00:42:00 – Workout program for prompting and pitfalls
  • 00:53:54 – Video Course Spotlight
  • 00:55:14 – Why an SVG of a pelican riding a bicycle?
  • 00:57:48 – Repeating a query and refining
  • 01:03:00 – Working in an IDE or text editor
  • 01:05:45 – David Crawshaw on writing code with LLMs
  • 01:08:33 – Running an LLM locally to write code
  • 01:14:02 – Staying out of the AGI conversation
  • 01:16:07 – What are you excited about in the world of Python?
  • 01:18:34 – What do you want to learn next?
  • 01:19:53 – How can people follow your work online?
  • 01:20:51 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

277 episodes

모든 에피소드

×
 
Loading …

Bienvenue sur Lecteur FM!

Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.

 

Guide de référence rapide

Écoutez cette émission pendant que vous explorez
Lire