3.1 Estimator selection with unknown variance (Christophe Giraud)


Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on April 19, 2019 09:37 (2+ y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 188707049 series 1600644
Par Universite Paris 1 Pantheon-Sorbonne, découvert par Player FM et notre communauté - Le copyright est détenu par l'éditeur, non par Player F, et l'audio est diffusé directement depuis ses serveurs. Appuyiez sur le bouton S'Abonner pour suivre les mises à jour sur Player FM, ou collez l'URL du flux dans d'autre applications de podcasts.
We consider the problem of Gaussian regression (possibly in a high- dimensional setting) when the noise variance is unknown. We propose a procedure which selects within any collection of estimators, an estimator hatf that nearly achieves the best bias/variance trade off. This selection procedure can be used as an alternative to Cross Validation to : - tune the parameters of a family of estimators - compare different families of estimation procedure - perform variable selection.

12 episodes