Artwork

Contenu fourni par Thermo Fisher. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Thermo Fisher ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !

Powering Everyday Life: The significance and impacts of the semiconductor industry

19:09
 
Partager
 

Manage episode 378144396 series 2557441
Contenu fourni par Thermo Fisher. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Thermo Fisher ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

⚡Semiconductor chips go through a long manufacturing process. It all depends on the type of chip, but the standard timeframe is between 120 days and nine months. It is a three-phase process that includes design and frontend and backend manufacturing, all dependent on various factors. ''These are global supply chains supporting the completed product. Semiconductor chips could be manufactured by a large fab, maybe most of it within the house, but there are diversified approaches too, where the chip is moving across the country to complete certain stages of manufacturing.''

⚡Some companies don't produce semiconductors in-house. The rationale behind such a decision lies in the need for a specific environment and certain conditions for making these chips. ''The fabs themselves are like huge low cities. All of this has to be clean room work. It needs to be done within one location generally. So because it's clean room work, you can't send that across until a critical step is completed in the manufacturing process. [...] If even a dust molecule were to land on any of these chips, the dust molecule's width is wide enough to block the passes of electrical current on the chip, thus making the chip ineffective," explains Geoff.

We use a wide range of gases to prevent impurities from harming the chips. The most commonly used are helium, nitrogen, argon, and hydrogen. However, the gases used must be in perfect condition. And that's Mark's job. ''My experience is mostly with mass spectrometry, which is one of the best ways to analyze compounds like this. Specifically, an API-MS — an atmospheric pressure ionization mass spectrometer — has a simplified analysis of big bulk gases. For example, in the past 20 or 30 years, you could not analyze oxygen, if you could not get down low detection limits, analyze oxygen in bulk nitrogen. That used to be a lot more difficult with traditional techniques. But Thermo Fisher Scientific has put out some new analyzers with such a low detection limit there that we can accurately say we will get 10 to 15 parts per trillion in our gases that are being put through all these processes.''

  continue reading

40 episodes

Artwork
iconPartager
 
Manage episode 378144396 series 2557441
Contenu fourni par Thermo Fisher. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Thermo Fisher ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

⚡Semiconductor chips go through a long manufacturing process. It all depends on the type of chip, but the standard timeframe is between 120 days and nine months. It is a three-phase process that includes design and frontend and backend manufacturing, all dependent on various factors. ''These are global supply chains supporting the completed product. Semiconductor chips could be manufactured by a large fab, maybe most of it within the house, but there are diversified approaches too, where the chip is moving across the country to complete certain stages of manufacturing.''

⚡Some companies don't produce semiconductors in-house. The rationale behind such a decision lies in the need for a specific environment and certain conditions for making these chips. ''The fabs themselves are like huge low cities. All of this has to be clean room work. It needs to be done within one location generally. So because it's clean room work, you can't send that across until a critical step is completed in the manufacturing process. [...] If even a dust molecule were to land on any of these chips, the dust molecule's width is wide enough to block the passes of electrical current on the chip, thus making the chip ineffective," explains Geoff.

We use a wide range of gases to prevent impurities from harming the chips. The most commonly used are helium, nitrogen, argon, and hydrogen. However, the gases used must be in perfect condition. And that's Mark's job. ''My experience is mostly with mass spectrometry, which is one of the best ways to analyze compounds like this. Specifically, an API-MS — an atmospheric pressure ionization mass spectrometer — has a simplified analysis of big bulk gases. For example, in the past 20 or 30 years, you could not analyze oxygen, if you could not get down low detection limits, analyze oxygen in bulk nitrogen. That used to be a lot more difficult with traditional techniques. But Thermo Fisher Scientific has put out some new analyzers with such a low detection limit there that we can accurately say we will get 10 to 15 parts per trillion in our gases that are being put through all these processes.''

  continue reading

40 episodes

Tous les épisodes

×
 
Loading …

Bienvenue sur Lecteur FM!

Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.

 

Guide de référence rapide