Africa-focused technology, digital and innovation ecosystem insight and commentary.
…
continue reading
Contenu fourni par Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !
Mettez-vous hors ligne avec l'application Player FM !
A Reality Check on AI-Driven Medical Assistants
MP3•Maison d'episode
Manage episode 267650792 series 74115
Contenu fourni par Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
The data science and artificial intelligence community has made amazing strides in the past few years to algorithmically automate portions of the healthcare process. This episode looks at two computer vision algorithms, one that diagnoses diabetic retinopathy and another that classifies liver cancer, and asks the question—are patients now getting better care, and achieving better outcomes, with these algorithms in the mix? The answer isn’t no, exactly, but it’s not a resounding yes, because these algorithms interact with a very complex system (the healthcare system) and other shortcomings of that system are proving hard to automate away. Getting a faster diagnosis from an image might not be an improvement if the image is now harder to capture (because of strict data quality requirements associated with the algorithm that wouldn’t stop a human doing the same job). Likewise, an algorithm getting a prediction mostly correct might not be an overall benefit if it introduces more dramatic failures when the prediction happens to be wrong. For every data scientist whose work is deployed into some kind of product, and is being used to solve real-world problems, these papers underscore how important and difficult it is to consider all the context around those problems.
…
continue reading
293 episodes
MP3•Maison d'episode
Manage episode 267650792 series 74115
Contenu fourni par Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
The data science and artificial intelligence community has made amazing strides in the past few years to algorithmically automate portions of the healthcare process. This episode looks at two computer vision algorithms, one that diagnoses diabetic retinopathy and another that classifies liver cancer, and asks the question—are patients now getting better care, and achieving better outcomes, with these algorithms in the mix? The answer isn’t no, exactly, but it’s not a resounding yes, because these algorithms interact with a very complex system (the healthcare system) and other shortcomings of that system are proving hard to automate away. Getting a faster diagnosis from an image might not be an improvement if the image is now harder to capture (because of strict data quality requirements associated with the algorithm that wouldn’t stop a human doing the same job). Likewise, an algorithm getting a prediction mostly correct might not be an overall benefit if it introduces more dramatic failures when the prediction happens to be wrong. For every data scientist whose work is deployed into some kind of product, and is being used to solve real-world problems, these papers underscore how important and difficult it is to consider all the context around those problems.
…
continue reading
293 episodes
Tous les épisodes
×Bienvenue sur Lecteur FM!
Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.