Artwork

Contenu fourni par The Quant / Financial Engineering Podcast and Patrick J Zoro. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par The Quant / Financial Engineering Podcast and Patrick J Zoro ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !

Reinforcement Learning and Interpretability

34:59
 
Partager
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 11, 2024 00:28 (21d ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 320254265 series 2686124
Contenu fourni par The Quant / Financial Engineering Podcast and Patrick J Zoro. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par The Quant / Financial Engineering Podcast and Patrick J Zoro ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Patrick Zoro welcomes to his podcasts Hariom Tatsat author of the book "Machine Learning and Data Science Blueprints for Finance: From Building Trading Strategies to Robo-Advisors Using Python 1st Edition", Bryan Yekelchik Lehigh MFE graduate and Zach Coriarty 4th Year, Bachelors of Science in Computer Science and Business at Lehigh University, Interested in data science and ML, LinkedIn: https://www.linkedin.com/in/zachary-coriarty/ They discuss their recent paper on "Deep Q-Network Interpertability: Applications to ETF Trading" https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3973146 https://www.svedbergopen.com/files/1643786733_(3)_IJAIML2021YH205248CR_(p_61-70).pdf
  continue reading

51 episodes

Artwork
iconPartager
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 11, 2024 00:28 (21d ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 320254265 series 2686124
Contenu fourni par The Quant / Financial Engineering Podcast and Patrick J Zoro. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par The Quant / Financial Engineering Podcast and Patrick J Zoro ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Patrick Zoro welcomes to his podcasts Hariom Tatsat author of the book "Machine Learning and Data Science Blueprints for Finance: From Building Trading Strategies to Robo-Advisors Using Python 1st Edition", Bryan Yekelchik Lehigh MFE graduate and Zach Coriarty 4th Year, Bachelors of Science in Computer Science and Business at Lehigh University, Interested in data science and ML, LinkedIn: https://www.linkedin.com/in/zachary-coriarty/ They discuss their recent paper on "Deep Q-Network Interpertability: Applications to ETF Trading" https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3973146 https://www.svedbergopen.com/files/1643786733_(3)_IJAIML2021YH205248CR_(p_61-70).pdf
  continue reading

51 episodes

Tous les épisodes

×
 
Loading …

Bienvenue sur Lecteur FM!

Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.

 

Guide de référence rapide