Artwork

Contenu fourni par The New Stack Podcast and The New Stack. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par The New Stack Podcast and The New Stack ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !

How Apache Iceberg and Flink Can Ease Developer Pain

47:08
 
Partager
 

Manage episode 439522425 series 75006
Contenu fourni par The New Stack Podcast and The New Stack. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par The New Stack Podcast and The New Stack ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

In the New Stack Makers episode, Adi Polak, Director, Advocacy and Developer Experience Engineering at Confluent discusses the operational and analytical estates in data infrastructure. The operational estate focuses on fast, low-latency event-driven applications, while the analytical estate handles long-running data crunching tasks. Challenges arise due to the "schema evolution" from upstream operational changes impacting downstream analytics, creating complexity for developers.

Apache Iceberg and Flink help mitigate these issues. Iceberg, a table format developed by Netflix, optimizes querying by managing file relationships within a data lake, reducing processing time and errors. It has been widely adopted by major companies like Airbnb and LinkedIn.

Apache Flink, a versatile data processing framework, is driving two key trends: shifting some batch processing tasks into stream processing and transitioning microservices into Flink streaming applications. This approach enhances system reliability, lowers latency, and meets customer demands for real-time data, like instant flight status updates. Together, Iceberg and Flink streamline data infrastructure, addressing developer pain points and improving efficiency.

Learn more from The New Stack about Apache Iceberg and Flink:

Unfreeze Apache Iceberg to Thaw Your Data Lakehouse

Apache Flink: 2023 Retrospective and Glimpse into the Future

4 Reasons Why Developers Should Use Apache Flink

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.

  continue reading

880 episodes

Artwork
iconPartager
 
Manage episode 439522425 series 75006
Contenu fourni par The New Stack Podcast and The New Stack. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par The New Stack Podcast and The New Stack ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

In the New Stack Makers episode, Adi Polak, Director, Advocacy and Developer Experience Engineering at Confluent discusses the operational and analytical estates in data infrastructure. The operational estate focuses on fast, low-latency event-driven applications, while the analytical estate handles long-running data crunching tasks. Challenges arise due to the "schema evolution" from upstream operational changes impacting downstream analytics, creating complexity for developers.

Apache Iceberg and Flink help mitigate these issues. Iceberg, a table format developed by Netflix, optimizes querying by managing file relationships within a data lake, reducing processing time and errors. It has been widely adopted by major companies like Airbnb and LinkedIn.

Apache Flink, a versatile data processing framework, is driving two key trends: shifting some batch processing tasks into stream processing and transitioning microservices into Flink streaming applications. This approach enhances system reliability, lowers latency, and meets customer demands for real-time data, like instant flight status updates. Together, Iceberg and Flink streamline data infrastructure, addressing developer pain points and improving efficiency.

Learn more from The New Stack about Apache Iceberg and Flink:

Unfreeze Apache Iceberg to Thaw Your Data Lakehouse

Apache Flink: 2023 Retrospective and Glimpse into the Future

4 Reasons Why Developers Should Use Apache Flink

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.

  continue reading

880 episodes

Tous les épisodes

×
 
Loading …

Bienvenue sur Lecteur FM!

Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.

 

Guide de référence rapide

Écoutez cette émission pendant que vous explorez
Lire