Artwork

Contenu fourni par The New Stack Podcast and The New Stack. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par The New Stack Podcast and The New Stack ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !

How Can We Solve Observability's Data Capture and Spending Problem?

22:21
 
Partager
 

Manage episode 520351842 series 2574278
Contenu fourni par The New Stack Podcast and The New Stack. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par The New Stack Podcast and The New Stack ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

DevOps practitioners — whether developers, operators, SREs or business stakeholders — increasingly rely on telemetry to guide decisions, yet face growing complexity, siloed teams and rising observability costs. In a conversation at KubeCon + CloudNativeCon North America, IBM’s Jacob Yackenovich emphasized the importance of collecting high-granularity, full-capture data to avoid missing critical performance signals across hybrid application stacks that blend legacy and cloud-native components. He argued that observability must evolve to serve both technical and nontechnical users, enabling teams to focus on issues based on real business impact rather than subjective judgment.

AI’s rapid integration into applications introduces new observability challenges. Yackenovich described two patterns: add-on AI services, such as chatbots, whose failures don’t disrupt core workflows, and blocking-style AI components embedded in essential processes like fraud detection, where errors directly affect application function.

Rising cloud and ingestion costs further complicate telemetry strategies. Yackenovich cautioned against limiting visibility for budget reasons, advocating instead for predictable, fixed-price observability models that let organizations innovate without financial uncertainty.

Learn more from The New Stack about the latest in observability:

Introduction to Observability

Observability 2.0? Or Just Logs All Over Again?

Building an Observability Culture: Getting Everyone Onboard

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.


Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

  continue reading

306 episodes

Artwork
iconPartager
 
Manage episode 520351842 series 2574278
Contenu fourni par The New Stack Podcast and The New Stack. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par The New Stack Podcast and The New Stack ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

DevOps practitioners — whether developers, operators, SREs or business stakeholders — increasingly rely on telemetry to guide decisions, yet face growing complexity, siloed teams and rising observability costs. In a conversation at KubeCon + CloudNativeCon North America, IBM’s Jacob Yackenovich emphasized the importance of collecting high-granularity, full-capture data to avoid missing critical performance signals across hybrid application stacks that blend legacy and cloud-native components. He argued that observability must evolve to serve both technical and nontechnical users, enabling teams to focus on issues based on real business impact rather than subjective judgment.

AI’s rapid integration into applications introduces new observability challenges. Yackenovich described two patterns: add-on AI services, such as chatbots, whose failures don’t disrupt core workflows, and blocking-style AI components embedded in essential processes like fraud detection, where errors directly affect application function.

Rising cloud and ingestion costs further complicate telemetry strategies. Yackenovich cautioned against limiting visibility for budget reasons, advocating instead for predictable, fixed-price observability models that let organizations innovate without financial uncertainty.

Learn more from The New Stack about the latest in observability:

Introduction to Observability

Observability 2.0? Or Just Logs All Over Again?

Building an Observability Culture: Getting Everyone Onboard

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.


Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

  continue reading

306 episodes

Tous les épisodes

×
 
Loading …

Bienvenue sur Lecteur FM!

Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.

 

Guide de référence rapide

Écoutez cette émission pendant que vous explorez
Lire