Artwork

Contenu fourni par Brian Carter. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Brian Carter ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !

Deep Convolutional Neural Networks (D-CNNs) for Breast Cancer Detection

7:27
 
Partager
 

Manage episode 446282872 series 3605861
Contenu fourni par Brian Carter. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Brian Carter ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

Here we discuss three different papers (see links below) on using D-CNNs to detect breast cancer.

The first source details the development and evaluation of HIPPO, a novel explainable AI method that enhances the interpretability and trustworthiness of ABMIL models in computational pathology. HIPPO aims to address the challenges of opaque decision-making in D-CNNs by generating counterfactual examples through tissue patch modifications in whole slide images. This allows for a deeper understanding of model behavior and the identification of potential biases. The second source investigates the performance of various D-CNN architectures, including transfer learning and an ensemble model, in breast cancer detection. This study finds that an ensemble model provides the highest detection and classification accuracy, while transfer learning does not improve the performance of the original D-CNN models. The authors attribute this to potential negative transfer learning, where pre-trained models trained on large-scale datasets with natural images may not be suitable for microscopic images or images from a different domain. The study concludes that the ensemble model, termed 'DIR', demonstrates promising results in breast cancer detection and highlights the potential for future research to address limitations and further enhance the accuracy of D-CNNs for this application.

Read:

  continue reading

71 episodes

Artwork
iconPartager
 
Manage episode 446282872 series 3605861
Contenu fourni par Brian Carter. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Brian Carter ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

Here we discuss three different papers (see links below) on using D-CNNs to detect breast cancer.

The first source details the development and evaluation of HIPPO, a novel explainable AI method that enhances the interpretability and trustworthiness of ABMIL models in computational pathology. HIPPO aims to address the challenges of opaque decision-making in D-CNNs by generating counterfactual examples through tissue patch modifications in whole slide images. This allows for a deeper understanding of model behavior and the identification of potential biases. The second source investigates the performance of various D-CNN architectures, including transfer learning and an ensemble model, in breast cancer detection. This study finds that an ensemble model provides the highest detection and classification accuracy, while transfer learning does not improve the performance of the original D-CNN models. The authors attribute this to potential negative transfer learning, where pre-trained models trained on large-scale datasets with natural images may not be suitable for microscopic images or images from a different domain. The study concludes that the ensemble model, termed 'DIR', demonstrates promising results in breast cancer detection and highlights the potential for future research to address limitations and further enhance the accuracy of D-CNNs for this application.

Read:

  continue reading

71 episodes

Tous les épisodes

×
 
Loading …

Bienvenue sur Lecteur FM!

Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.

 

Guide de référence rapide

Écoutez cette émission pendant que vous explorez
Lire