Artwork

Contenu fourni par Tedy Nenu. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Tedy Nenu ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !

Peter Koellner on Penrose's New Argument concerning Minds and Machines | Episode 10

47:01
 
Partager
 

Manage episode 394805551 series 3549261
Contenu fourni par Tedy Nenu. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Tedy Nenu ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

Professor Peter Koellner is a leading Logician and Philosopher based at Harvard University. He has made very important contributions to areas surrounding Mathematical Logic and today he was kind enough to join me for a discussion on Penrose's arguments against the prospects of mechanizing the mind (given Kurt Gödel's work on Incompleteness).
Note: I am sorry for the occasional internet connection problems. I hope the relevant parts can still be understood!
Conversation Outline:
00:00 What are the Incompleteness Theorems?
01:59 Why are Gödel’s results relevant for discussions concerning the mind?
03:28 Connections between Turing Machines and Formal Systems
04:20 When we talk about whether the mind can be mechanized or not, what do we mean?
06:56 Should Cognitive Scientists (or Philosophers of Mind) be interested in this discussion?
09:45 The First Generation of Arguments against The Prospects of Mechanizing the Mind
19:52 Three Versions of The Mechanistic Thesis
21:55 What makes Penrose’s New Argument harder to evaluate in theory EA+T?
22:56 Penrose’s Formulation of The Argument (Quote from his Book)
27:49 What are the explicit assumptions behind Penrose’s New Argument?
32:14 What are the indeterminate statements that Penrose uses in the argument?
36:10 Do you think we’ll ever have an adequate formal theory of type-free truth which settles Gödel’s First Disjunct (the one targeted by Penrose)?
37:18 Do you think your opponent would accept bringing the key notions of relative provability, absolute provability and truth in the setting of effectively formalized theories?
42:25 Why do you think Penrose does not abandon his New Argument, despite resistance from mathematical logicians?
44:35 Unlike Lucas or Penrose, some authors such as Hofstadter use Gödel’s results to illuminate the workings of the mind. Do you think the Incompleteness Theorems have anything worthwhile to say here?
Enjoy!
Apple Podcasts:
https://podcasts.apple.com/gb/podcast/philosophical-trials/id1513707135
Spotify:
https://open.spotify.com/show/3Sz88leU8tmeKe3MAZ9i10
Google Podcasts:
https://podcasts.google.com/?q=philosophical%20trials
Instagram:
https://www.instagram.com/tedynenu/

  continue reading

15 episodes

Artwork
iconPartager
 
Manage episode 394805551 series 3549261
Contenu fourni par Tedy Nenu. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Tedy Nenu ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

Professor Peter Koellner is a leading Logician and Philosopher based at Harvard University. He has made very important contributions to areas surrounding Mathematical Logic and today he was kind enough to join me for a discussion on Penrose's arguments against the prospects of mechanizing the mind (given Kurt Gödel's work on Incompleteness).
Note: I am sorry for the occasional internet connection problems. I hope the relevant parts can still be understood!
Conversation Outline:
00:00 What are the Incompleteness Theorems?
01:59 Why are Gödel’s results relevant for discussions concerning the mind?
03:28 Connections between Turing Machines and Formal Systems
04:20 When we talk about whether the mind can be mechanized or not, what do we mean?
06:56 Should Cognitive Scientists (or Philosophers of Mind) be interested in this discussion?
09:45 The First Generation of Arguments against The Prospects of Mechanizing the Mind
19:52 Three Versions of The Mechanistic Thesis
21:55 What makes Penrose’s New Argument harder to evaluate in theory EA+T?
22:56 Penrose’s Formulation of The Argument (Quote from his Book)
27:49 What are the explicit assumptions behind Penrose’s New Argument?
32:14 What are the indeterminate statements that Penrose uses in the argument?
36:10 Do you think we’ll ever have an adequate formal theory of type-free truth which settles Gödel’s First Disjunct (the one targeted by Penrose)?
37:18 Do you think your opponent would accept bringing the key notions of relative provability, absolute provability and truth in the setting of effectively formalized theories?
42:25 Why do you think Penrose does not abandon his New Argument, despite resistance from mathematical logicians?
44:35 Unlike Lucas or Penrose, some authors such as Hofstadter use Gödel’s results to illuminate the workings of the mind. Do you think the Incompleteness Theorems have anything worthwhile to say here?
Enjoy!
Apple Podcasts:
https://podcasts.apple.com/gb/podcast/philosophical-trials/id1513707135
Spotify:
https://open.spotify.com/show/3Sz88leU8tmeKe3MAZ9i10
Google Podcasts:
https://podcasts.google.com/?q=philosophical%20trials
Instagram:
https://www.instagram.com/tedynenu/

  continue reading

15 episodes

Tous les épisodes

×
 
Loading …

Bienvenue sur Lecteur FM!

Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.

 

Guide de référence rapide