Artwork

Contenu fourni par O'Reilly Radar. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par O'Reilly Radar ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !

Why It's Hard to Design Fair Machine Learning Models

34:26
 
Partager
 

Manage episode 217702587 series 1427720
Contenu fourni par O'Reilly Radar. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par O'Reilly Radar ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
In this episode of the Data Show, I spoke with Sharad Goel, assistant professor at Stanford, and his student Sam Corbett-Davies. They recently wrote a survey paper, “A Critical Review of Fair Machine Learning,” where they carefully examined the standard statistical tools used to check for fairness in machine learning models. It turns out that each of the standard approaches (anti-classification, classification parity, and calibration) has limitations, and their paper is a must-read tour through recent research in designing fair algorithms. We talked about their key findings, and, most importantly, I pressed them to list a few best practices that analysts and industrial data scientists might want to consider.
  continue reading

443 episodes

Artwork
iconPartager
 
Manage episode 217702587 series 1427720
Contenu fourni par O'Reilly Radar. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par O'Reilly Radar ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
In this episode of the Data Show, I spoke with Sharad Goel, assistant professor at Stanford, and his student Sam Corbett-Davies. They recently wrote a survey paper, “A Critical Review of Fair Machine Learning,” where they carefully examined the standard statistical tools used to check for fairness in machine learning models. It turns out that each of the standard approaches (anti-classification, classification parity, and calibration) has limitations, and their paper is a must-read tour through recent research in designing fair algorithms. We talked about their key findings, and, most importantly, I pressed them to list a few best practices that analysts and industrial data scientists might want to consider.
  continue reading

443 episodes

כל הפרקים

×
 
Loading …

Bienvenue sur Lecteur FM!

Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.

 

Guide de référence rapide

Écoutez cette émission pendant que vous explorez
Lire