Data analyst Q&A 11. What are the best practices for data cleaning?
M4A•Maison d'episode
Manage episode 313041441 series 3257233
Contenu fourni par Sominath Avhad. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Sominath Avhad ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
11. What are the best practices for data cleaning? If you are sitting for a data analyst job, this is one of the most frequently asked data analyst interview questions. Data cleansing primarily refers to the process of detecting and removing errors and inconsistencies from the data to improve data quality. The sample answer is… 1. Make a data cleaning plan by understanding where the common error take place and keep communication open 2. Identity and remove duplicates values before working with the data. This will lead to an effective data analysis process 3. Focus on the accuracy of the data. Maintain the value types of data, provide a mandatory constraints and set cross-field validation. 4. Standardize the data at the point of entry so that it is less chaotic and you will be able to ensure that all information is standardized, leading to fewer errors on entry.
…
continue reading
90 episodes