Mettez-vous hors ligne avec l'application Player FM !
The Locally Nameless Representation
Manage episode 459048862 series 2823367
I discuss what is called the locally nameless representation of syntax with binders, following the first couple of sections of the very nicely written paper "The Locally Nameless Representation," by Charguéraud. I complain due to the statement in the paper that "the theory of λ-calculus identifies terms that are α-equivalent," which is simply not true if one is considering lambda calculus as defined by Church, where renaming is an explicit reduction step, on a par with beta-reduction. I also answer a listener's question about what "computational type theory" means.
Feel free to email me any time at aaron.stump@bc.edu, or join the Telegram group for the podcast.
170 episodes
Manage episode 459048862 series 2823367
I discuss what is called the locally nameless representation of syntax with binders, following the first couple of sections of the very nicely written paper "The Locally Nameless Representation," by Charguéraud. I complain due to the statement in the paper that "the theory of λ-calculus identifies terms that are α-equivalent," which is simply not true if one is considering lambda calculus as defined by Church, where renaming is an explicit reduction step, on a par with beta-reduction. I also answer a listener's question about what "computational type theory" means.
Feel free to email me any time at aaron.stump@bc.edu, or join the Telegram group for the podcast.
170 episodes
Tous les épisodes
×Bienvenue sur Lecteur FM!
Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.