Artwork

Contenu fourni par Kai Kunze. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Kai Kunze ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !

ISMAR 2024: Filtering on the Go: Effect of Filters on Gaze Pointing Accuracy During Physical Locomotion in Extended Reality

20:26
 
Partager
 

Manage episode 448053227 series 3605621
Contenu fourni par Kai Kunze. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Kai Kunze ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

Pavel Manakhov, Ludwig Sidenmark, Ken Pfeuffer, and Hans Gellersen. 2024. Filtering on the Go: Effect of Filters on Gaze Pointing Accuracy During Physical Locomotion in Extended Reality. IEEE Transactions on Visualization and Computer Graphics 30, 11 (Nov. 2024), 7234–7244. https://doi.org/10.1109/TVCG.2024.3456153

Eye tracking filters have been shown to improve accuracy of gaze estimation and input for stationary settings. However, their effectiveness during physical movement remains underexplored. In this work, we compare common online filters in the context of physical locomotion in extended reality and propose alterations to improve them for on-the-go settings. We conducted a computational experiment where we simulate performance of the online filters using data on participants attending visual targets located in world-, path-, and two head-based reference frames while standing, walking, and jogging. Our results provide insights into the filters' effectiveness and factors that affect it, such as the amount of noise caused by locomotion and differences in compensatory eye movements, and demonstrate that filters with saccade detection prove most useful for on-the-go settings. We discuss the implications of our findings and conclude with guidance on gaze data filtering for interaction in extended reality.

https://ieeexplore.ieee.org/document/10672561

  continue reading

34 episodes

Artwork
iconPartager
 
Manage episode 448053227 series 3605621
Contenu fourni par Kai Kunze. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Kai Kunze ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

Pavel Manakhov, Ludwig Sidenmark, Ken Pfeuffer, and Hans Gellersen. 2024. Filtering on the Go: Effect of Filters on Gaze Pointing Accuracy During Physical Locomotion in Extended Reality. IEEE Transactions on Visualization and Computer Graphics 30, 11 (Nov. 2024), 7234–7244. https://doi.org/10.1109/TVCG.2024.3456153

Eye tracking filters have been shown to improve accuracy of gaze estimation and input for stationary settings. However, their effectiveness during physical movement remains underexplored. In this work, we compare common online filters in the context of physical locomotion in extended reality and propose alterations to improve them for on-the-go settings. We conducted a computational experiment where we simulate performance of the online filters using data on participants attending visual targets located in world-, path-, and two head-based reference frames while standing, walking, and jogging. Our results provide insights into the filters' effectiveness and factors that affect it, such as the amount of noise caused by locomotion and differences in compensatory eye movements, and demonstrate that filters with saccade detection prove most useful for on-the-go settings. We discuss the implications of our findings and conclude with guidance on gaze data filtering for interaction in extended reality.

https://ieeexplore.ieee.org/document/10672561

  continue reading

34 episodes

All episodes

×
 
Loading …

Bienvenue sur Lecteur FM!

Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.

 

Guide de référence rapide