Artwork

Contenu fourni par HackerNoon. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par HackerNoon ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !

A Consensus-Based Algorithm for Non-Convex Multiplayer Games: Nonlinear Oligopoly Games

2:17
 
Partager
 

Manage episode 428397116 series 3474369
Contenu fourni par HackerNoon. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par HackerNoon ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/a-consensus-based-algorithm-for-non-convex-multiplayer-games-nonlinear-oligopoly-games.
A novel algorithm using swarm intelligence to find global Nash equilibria in nonconvex multiplayer games, with convergence guarantees and numerical experiments.
Check more stories related to gaming at: https://hackernoon.com/c/gaming. You can also check exclusive content about #games, #consensus-based-optimization, #numerical-experiments, #zeroth-order-algorithm, #nonconvex-multiplayer-games, #global-nash-equilibria, #metaheuristics, #mean-field-convergence, and more.
This story was written by: @oligopoly. Learn more about this writer by checking @oligopoly's about page, and for more stories, please visit hackernoon.com.
The study was conducted by Enis Chenchene, Hui Huang, Jinniao Qiu and Hui Chen. They studied the dependence of Algorithm 1 with respect to the algorithm’s parameters to solve (3.5) of good produced. They found no significant differences in the convergence behavior of anisotropic or isotropic dynamics.

  continue reading

135 episodes

Artwork
iconPartager
 
Manage episode 428397116 series 3474369
Contenu fourni par HackerNoon. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par HackerNoon ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/a-consensus-based-algorithm-for-non-convex-multiplayer-games-nonlinear-oligopoly-games.
A novel algorithm using swarm intelligence to find global Nash equilibria in nonconvex multiplayer games, with convergence guarantees and numerical experiments.
Check more stories related to gaming at: https://hackernoon.com/c/gaming. You can also check exclusive content about #games, #consensus-based-optimization, #numerical-experiments, #zeroth-order-algorithm, #nonconvex-multiplayer-games, #global-nash-equilibria, #metaheuristics, #mean-field-convergence, and more.
This story was written by: @oligopoly. Learn more about this writer by checking @oligopoly's about page, and for more stories, please visit hackernoon.com.
The study was conducted by Enis Chenchene, Hui Huang, Jinniao Qiu and Hui Chen. They studied the dependence of Algorithm 1 with respect to the algorithm’s parameters to solve (3.5) of good produced. They found no significant differences in the convergence behavior of anisotropic or isotropic dynamics.

  continue reading

135 episodes

Todos los episodios

×
 
Loading …

Bienvenue sur Lecteur FM!

Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.

 

Guide de référence rapide

Écoutez cette émission pendant que vous explorez
Lire