Artwork

Contenu fourni par Daniel Filan. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Daniel Filan ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !

16 - Preparing for Debate AI with Geoffrey Irving

1:04:49
 
Partager
 

Manage episode 333232020 series 2844728
Contenu fourni par Daniel Filan. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Daniel Filan ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

Many people in the AI alignment space have heard of AI safety via debate - check out AXRP episode 6 (axrp.net/episode/2021/04/08/episode-6-debate-beth-barnes.html) if you need a primer. But how do we get language models to the stage where they can usefully implement debate? In this episode, I talk to Geoffrey Irving about the role of language models in AI safety, as well as three projects he's done that get us closer to making debate happen: using language models to find flaws in themselves, getting language models to back up claims they make with citations, and figuring out how uncertain language models should be about the quality of various answers.

Topics we discuss, and timestamps:

- 00:00:48 - Status update on AI safety via debate

- 00:10:24 - Language models and AI safety

- 00:19:34 - Red teaming language models with language models

- 00:35:31 - GopherCite

- 00:49:10 - Uncertainty Estimation for Language Reward Models

- 01:00:26 - Following Geoffrey's work, and working with him

The transcript: axrp.net/episode/2022/07/01/episode-16-preparing-for-debate-ai-geoffrey-irving.html

Geoffrey's twitter: twitter.com/geoffreyirving

Research we discuss:

- Red Teaming Language Models With Language Models: arxiv.org/abs/2202.03286

- Teaching Language Models to Support Answers with Verified Quotes, aka GopherCite: arxiv.org/abs/2203.11147

- Uncertainty Estimation for Language Reward Models: arxiv.org/abs/2203.07472

- AI Safety via Debate: arxiv.org/abs/1805.00899

- Writeup: progress on AI safety via debate: lesswrong.com/posts/Br4xDbYu4Frwrb64a/writeup-progress-on-ai-safety-via-debate-1

- Eliciting Latent Knowledge: ai-alignment.com/eliciting-latent-knowledge-f977478608fc

- Training Compute-Optimal Large Language Models, aka Chinchilla: arxiv.org/abs/2203.15556

  continue reading

42 episodes

Artwork
iconPartager
 
Manage episode 333232020 series 2844728
Contenu fourni par Daniel Filan. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Daniel Filan ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

Many people in the AI alignment space have heard of AI safety via debate - check out AXRP episode 6 (axrp.net/episode/2021/04/08/episode-6-debate-beth-barnes.html) if you need a primer. But how do we get language models to the stage where they can usefully implement debate? In this episode, I talk to Geoffrey Irving about the role of language models in AI safety, as well as three projects he's done that get us closer to making debate happen: using language models to find flaws in themselves, getting language models to back up claims they make with citations, and figuring out how uncertain language models should be about the quality of various answers.

Topics we discuss, and timestamps:

- 00:00:48 - Status update on AI safety via debate

- 00:10:24 - Language models and AI safety

- 00:19:34 - Red teaming language models with language models

- 00:35:31 - GopherCite

- 00:49:10 - Uncertainty Estimation for Language Reward Models

- 01:00:26 - Following Geoffrey's work, and working with him

The transcript: axrp.net/episode/2022/07/01/episode-16-preparing-for-debate-ai-geoffrey-irving.html

Geoffrey's twitter: twitter.com/geoffreyirving

Research we discuss:

- Red Teaming Language Models With Language Models: arxiv.org/abs/2202.03286

- Teaching Language Models to Support Answers with Verified Quotes, aka GopherCite: arxiv.org/abs/2203.11147

- Uncertainty Estimation for Language Reward Models: arxiv.org/abs/2203.07472

- AI Safety via Debate: arxiv.org/abs/1805.00899

- Writeup: progress on AI safety via debate: lesswrong.com/posts/Br4xDbYu4Frwrb64a/writeup-progress-on-ai-safety-via-debate-1

- Eliciting Latent Knowledge: ai-alignment.com/eliciting-latent-knowledge-f977478608fc

- Training Compute-Optimal Large Language Models, aka Chinchilla: arxiv.org/abs/2203.15556

  continue reading

42 episodes

כל הפרקים

×
 
Loading …

Bienvenue sur Lecteur FM!

Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.

 

Guide de référence rapide