Artwork

Contenu fourni par Shimin Zhang & Dan Lasky, Shimin Zhang, and Dan Lasky. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Shimin Zhang & Dan Lasky, Shimin Zhang, and Dan Lasky ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !

Episode 4: Open AI Code Red, TPU vs GPU and More Autonomous Coding Agents

1:04:22
 
Partager
 

Manage episode 522824670 series 3703995
Contenu fourni par Shimin Zhang & Dan Lasky, Shimin Zhang, and Dan Lasky. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Shimin Zhang & Dan Lasky, Shimin Zhang, and Dan Lasky ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

In this episode of Artificial Developer Intelligence, hosts Shimin and Dan discuss the evolving landscape of AI in software engineering, touching on topics such as OpenAI's recent challenges, the significance of Google TPUs, and effective techniques for working with large language models. They also delve into a deep dive on general agentic memory, share insights on code quality, and assess the current state of the AI bubble.

Takeaways

  • Google's TPUs are designed specifically for AI inference, offering advantages over traditional GPUs.
  • Effective use of large language models requires avoiding common anti-patterns.
  • AI adoption rates are showing signs of flattening out, particularly among larger firms.
  • General agentic memory can enhance the performance of AI models by improving context management.
  • Code quality remains crucial, even as AI tools make coding easier and faster.
  • Smaller, more frequent code reviews can enhance team communication and project understanding.
  • AI models are not infallible; they require careful oversight and validation of generated code.
  • The future of AI may hinge on research rather than mere scaling of existing models.

Resources Mentioned
OpenAI Code Red
The chip made for the AI inference era – the Google TPU
Anti-patterns while working with LLMs
Writing a good claude md
Effective harnesses for long-running agents
General Agentic Memory Via Deep Research
AI Adoption Rates Starting to Flatten Out
A trillion dollars is a terrible thing to waste

Chapters
Connect with ADIPod

  continue reading

4 episodes

Artwork
iconPartager
 
Manage episode 522824670 series 3703995
Contenu fourni par Shimin Zhang & Dan Lasky, Shimin Zhang, and Dan Lasky. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Shimin Zhang & Dan Lasky, Shimin Zhang, and Dan Lasky ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

In this episode of Artificial Developer Intelligence, hosts Shimin and Dan discuss the evolving landscape of AI in software engineering, touching on topics such as OpenAI's recent challenges, the significance of Google TPUs, and effective techniques for working with large language models. They also delve into a deep dive on general agentic memory, share insights on code quality, and assess the current state of the AI bubble.

Takeaways

  • Google's TPUs are designed specifically for AI inference, offering advantages over traditional GPUs.
  • Effective use of large language models requires avoiding common anti-patterns.
  • AI adoption rates are showing signs of flattening out, particularly among larger firms.
  • General agentic memory can enhance the performance of AI models by improving context management.
  • Code quality remains crucial, even as AI tools make coding easier and faster.
  • Smaller, more frequent code reviews can enhance team communication and project understanding.
  • AI models are not infallible; they require careful oversight and validation of generated code.
  • The future of AI may hinge on research rather than mere scaling of existing models.

Resources Mentioned
OpenAI Code Red
The chip made for the AI inference era – the Google TPU
Anti-patterns while working with LLMs
Writing a good claude md
Effective harnesses for long-running agents
General Agentic Memory Via Deep Research
AI Adoption Rates Starting to Flatten Out
A trillion dollars is a terrible thing to waste

Chapters
Connect with ADIPod

  continue reading

4 episodes

Tous les épisodes

×
 
Loading …

Bienvenue sur Lecteur FM!

Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.

 

Guide de référence rapide

Écoutez cette émission pendant que vous explorez
Lire