Artwork

Contenu fourni par John Danaher. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par John Danaher ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !

81 – Consumer Credit, Big Tech and AI Crime

 
Partager
 

Manage episode 272357877 series 1328245
Contenu fourni par John Danaher. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par John Danaher ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

In today’s episode, I talk to Nikita Aggarwal about the legal and regulatory aspects of AI and algorithmic governance. We focus, in particular, on three topics: (i) algorithmic credit scoring; (ii) the problem of ‘too big to fail’ tech platforms and (iii) AI crime. Nikita is a DPhil (PhD) candidate at the Faculty of Law at Oxford, as well as a Research Associate at the Oxford Internet Institute’s Digital Ethics Lab. Her research examines the legal and ethical challenges due to emerging, data-driven technologies, with a particular focus on machine learning in consumer lending. Prior to entering academia, she was an attorney in the legal department of the International Monetary Fund, where she advised on financial sector law reform in the Euro area.

You can listen to the episode below or download here. You can also subscribe on Apple Podcasts, Stitcher, Spotify and other podcasting services (the RSS feed is here).

Show Notes

Topics discussed include:

  • The digitisation, datafication and disintermediation of consumer credit markets
  • Algorithmic credit scoring
  • The problems of risk and bias in credit scoring
  • How law and regulation can address these problems
  • Tech platforms that are too big to fail
  • What should we do if Facebook fails?
  • The forms of AI crime
  • How to address the problem of AI crime

Relevant Links

  continue reading

64 episodes

Artwork
iconPartager
 
Manage episode 272357877 series 1328245
Contenu fourni par John Danaher. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par John Danaher ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

In today’s episode, I talk to Nikita Aggarwal about the legal and regulatory aspects of AI and algorithmic governance. We focus, in particular, on three topics: (i) algorithmic credit scoring; (ii) the problem of ‘too big to fail’ tech platforms and (iii) AI crime. Nikita is a DPhil (PhD) candidate at the Faculty of Law at Oxford, as well as a Research Associate at the Oxford Internet Institute’s Digital Ethics Lab. Her research examines the legal and ethical challenges due to emerging, data-driven technologies, with a particular focus on machine learning in consumer lending. Prior to entering academia, she was an attorney in the legal department of the International Monetary Fund, where she advised on financial sector law reform in the Euro area.

You can listen to the episode below or download here. You can also subscribe on Apple Podcasts, Stitcher, Spotify and other podcasting services (the RSS feed is here).

Show Notes

Topics discussed include:

  • The digitisation, datafication and disintermediation of consumer credit markets
  • Algorithmic credit scoring
  • The problems of risk and bias in credit scoring
  • How law and regulation can address these problems
  • Tech platforms that are too big to fail
  • What should we do if Facebook fails?
  • The forms of AI crime
  • How to address the problem of AI crime

Relevant Links

  continue reading

64 episodes

所有剧集

×
 
Loading …

Bienvenue sur Lecteur FM!

Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.

 

Guide de référence rapide