Artwork

Contenu fourni par BlueDot Impact. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par BlueDot Impact ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !

Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback

32:19
 
Partager
 

Manage episode 429711880 series 3498845
Contenu fourni par BlueDot Impact. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par BlueDot Impact ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

This paper explains Anthropic’s constitutional AI approach, which is largely an extension on RLHF but with AIs replacing human demonstrators and human evaluators.

Everything in this paper is relevant to this week's learning objectives, and we recommend you read it in its entirety. It summarises limitations with conventional RLHF, explains the constitutional AI approach, shows how it performs, and where future research might be directed.

If you are in a rush, focus on sections 1.2, 3.1, 3.4, 4.1, 6.1, 6.2.

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Chapitres

1. Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback (00:00:00)

2. Abstract (00:00:30)

3. 3 Open Problems and Limitations of RLHF (00:01:23)

4. 3.1 Challenges with Obtaining Human Feedback (00:03:17)

5. 3.1.1 Misaligned Humans: Evaluators may Pursue the Wrong Goals (00:03:38)

6. 3.1.2 Good Oversight is Difficult (00:06:51)

7. 3.1.3 Data Quality (00:11:08)

8. 3.1.4 Limitations of Feedback Types (00:12:59)

9. 3.2 Challenges with the Reward Model (00:17:03)

10. 3.2.1 Problem Misspecification (00:17:27)

11. 3.2.2 Reward Misgeneralization and Hacking (00:20:24)

12. 3.2.3 Evaluating Reward Models (00:22:30)

13. 3.3 Challenges with the Policy (00:23:49)

14. 3.3.1 Robust Reinforcement Learning is Difficul (00:24:13)

15. 3.3.2 Policy Misgeneralization (00:26:23)

16. 3.3.3 Distributional Challenges (00:27:35)

17. 3.4 Challenges with Jointly Training the Reward Model and Policy (00:29:54)

83 episodes

Artwork
iconPartager
 
Manage episode 429711880 series 3498845
Contenu fourni par BlueDot Impact. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par BlueDot Impact ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

This paper explains Anthropic’s constitutional AI approach, which is largely an extension on RLHF but with AIs replacing human demonstrators and human evaluators.

Everything in this paper is relevant to this week's learning objectives, and we recommend you read it in its entirety. It summarises limitations with conventional RLHF, explains the constitutional AI approach, shows how it performs, and where future research might be directed.

If you are in a rush, focus on sections 1.2, 3.1, 3.4, 4.1, 6.1, 6.2.

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Chapitres

1. Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback (00:00:00)

2. Abstract (00:00:30)

3. 3 Open Problems and Limitations of RLHF (00:01:23)

4. 3.1 Challenges with Obtaining Human Feedback (00:03:17)

5. 3.1.1 Misaligned Humans: Evaluators may Pursue the Wrong Goals (00:03:38)

6. 3.1.2 Good Oversight is Difficult (00:06:51)

7. 3.1.3 Data Quality (00:11:08)

8. 3.1.4 Limitations of Feedback Types (00:12:59)

9. 3.2 Challenges with the Reward Model (00:17:03)

10. 3.2.1 Problem Misspecification (00:17:27)

11. 3.2.2 Reward Misgeneralization and Hacking (00:20:24)

12. 3.2.3 Evaluating Reward Models (00:22:30)

13. 3.3 Challenges with the Policy (00:23:49)

14. 3.3.1 Robust Reinforcement Learning is Difficul (00:24:13)

15. 3.3.2 Policy Misgeneralization (00:26:23)

16. 3.3.3 Distributional Challenges (00:27:35)

17. 3.4 Challenges with Jointly Training the Reward Model and Policy (00:29:54)

83 episodes

Tous les épisodes

×
 
Loading …

Bienvenue sur Lecteur FM!

Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.

 

Guide de référence rapide