Artwork

Contenu fourni par BlueDot Impact. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par BlueDot Impact ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !

Chinchilla’s Wild Implications

24:57
 
Partager
 

Manage episode 424087968 series 3498845
Contenu fourni par BlueDot Impact. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par BlueDot Impact ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

This post is about language model scaling laws, specifically the laws derived in the DeepMind paper that introduced Chinchilla. The paper came out a few months ago, and has been discussed a lot, but some of its implications deserve more explicit notice in my opinion. In particular: Data, not size, is the currently active constraint on language modeling performance. Current returns to additional data are immense, and current returns to additional model size are miniscule; indeed, most recent landmark models are wastefully big. If we can leverage enough data, there is no reason to train ~500B param models, much less 1T or larger models. If we have to train models at these large sizes, it will mean we have encountered a barrier to exploitation of data scaling, which would be a great loss relative to what would otherwise be possible. The literature is extremely unclear on how much text data is actually available for training. We may be "running out" of general-domain data, but the literature is too vague to know one way or the other. The entire available quantity of data in highly specialized domains like code is woefully tiny, compared to the gains that would be possible if much more such data were available. Some things to note at the outset: This post assumes you have some familiarity with LM scaling laws. As in the paper, I'll assume here that models never see repeated data in training.

Original text:

https://www.alignmentforum.org/posts/6Fpvch8RR29qLEWNH/chinchilla-s-wild-implications

Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Chapitres

1. Chinchilla’s Wild Implications (00:00:00)

2. 1. the scaling law (00:02:19)

3. plugging in real models (00:04:10)

4. 2. are we running out of data? (00:11:48)

5. web scrapes (00:15:02)

6. "all the data we have" (00:20:46)

7. what is compute? (on a further barrier to data scaling) (00:21:35)

8. appendix: to infinity (00:23:24)

83 episodes

Artwork
iconPartager
 
Manage episode 424087968 series 3498845
Contenu fourni par BlueDot Impact. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par BlueDot Impact ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

This post is about language model scaling laws, specifically the laws derived in the DeepMind paper that introduced Chinchilla. The paper came out a few months ago, and has been discussed a lot, but some of its implications deserve more explicit notice in my opinion. In particular: Data, not size, is the currently active constraint on language modeling performance. Current returns to additional data are immense, and current returns to additional model size are miniscule; indeed, most recent landmark models are wastefully big. If we can leverage enough data, there is no reason to train ~500B param models, much less 1T or larger models. If we have to train models at these large sizes, it will mean we have encountered a barrier to exploitation of data scaling, which would be a great loss relative to what would otherwise be possible. The literature is extremely unclear on how much text data is actually available for training. We may be "running out" of general-domain data, but the literature is too vague to know one way or the other. The entire available quantity of data in highly specialized domains like code is woefully tiny, compared to the gains that would be possible if much more such data were available. Some things to note at the outset: This post assumes you have some familiarity with LM scaling laws. As in the paper, I'll assume here that models never see repeated data in training.

Original text:

https://www.alignmentforum.org/posts/6Fpvch8RR29qLEWNH/chinchilla-s-wild-implications

Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Chapitres

1. Chinchilla’s Wild Implications (00:00:00)

2. 1. the scaling law (00:02:19)

3. plugging in real models (00:04:10)

4. 2. are we running out of data? (00:11:48)

5. web scrapes (00:15:02)

6. "all the data we have" (00:20:46)

7. what is compute? (on a further barrier to data scaling) (00:21:35)

8. appendix: to infinity (00:23:24)

83 episodes

Tous les épisodes

×
 
Loading …

Bienvenue sur Lecteur FM!

Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.

 

Guide de référence rapide