Player FM - Internet Radio Done Right
Checked 2+ y ago
Ajouté il y a sept ans
Contenu fourni par Karlsruher Institut für Technologie (KIT). Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Karlsruher Institut für Technologie (KIT) ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !
Mettez-vous hors ligne avec l'application Player FM !
Podcasts qui valent la peine d'être écoutés
SPONSORISÉ
P
People Magic: How to Build a $1M Community
1 Community Should Not Be A Grind 23:15
23:15
Lire Plus Tard
Lire Plus Tard
Des listes
J'aime
Aimé
23:15Amanda was the former head of brand for The Knot – the global leader in weddings. Previously, Goetz served as a startup founder building availability software for the wedding industry after spending years analyzing companies for Ernst & Young’s Entrepreneur Of The Year program. She also worked for celebrity wedding planner David Tutera as Head of Marketing developing the go-to market strategy for his brands, licensing deals and client partners. She has built an audience of over 150,000 in the startup and business community, learning to live a life of ambition and success without subscribing to today’s hustle culture. She launched a newsletter called 🧩 Life’s a Game with Amanda Goetz to help high performers learn actionable tips for living a life of intention. ABOUT MIGHTY NETWORKS Mighty Networks is the ONLY community platform that introduces your members to each other—for extraordinary engagement, longer retention, and word-of-mouth growth. You can run memberships, courses, challenges, and events on a Mighty Network—all under your own brand on mobile and web.…
14: Kognitive Systeme, Vorlesung, SS 2017, 12.07.2017
Manage episode 187895221 series 1562260
Contenu fourni par Karlsruher Institut für Technologie (KIT). Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Karlsruher Institut für Technologie (KIT) ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
14 | 0:00:00 Starten 0:01:34 Überblick 0:02:36 Einführung 0:14:57 Beispiel: Roboter ""ARMAR-|||"" 0:16:36 Gelenktypen 0:18:31 Arbeitsraum 0:24:25 Beispiele für Arbeitsräume 0:25:41 Paralleler Roboter 0:28:11 Kommerzielle Robotertypen 0:29:06 Mobile Systeme, Lokomotion 0:29:33 Radkonfigurationen 0:31:30 Mecanum-Antrieb 0:32:51 Aktuatoren 0:33:24 Fluidscher Antrieb 0:33:58 Muskelartiger Antrieb 0:35:41 Elktrischer Antrieb 0:35:57 Funktionsweise Elektromotor 0:37:12 Sensoren 0:41:49 Robotermodellierung 0:43:31 Geometrische Modellierung 0:44:23 Geometrisches Modell 0:45:45 Kinematisches Modell 0:50:46 Kinematisches Modell 0:52:51 Dynamisches Model
…
continue reading
16 episodes
Manage episode 187895221 series 1562260
Contenu fourni par Karlsruher Institut für Technologie (KIT). Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Karlsruher Institut für Technologie (KIT) ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
14 | 0:00:00 Starten 0:01:34 Überblick 0:02:36 Einführung 0:14:57 Beispiel: Roboter ""ARMAR-|||"" 0:16:36 Gelenktypen 0:18:31 Arbeitsraum 0:24:25 Beispiele für Arbeitsräume 0:25:41 Paralleler Roboter 0:28:11 Kommerzielle Robotertypen 0:29:06 Mobile Systeme, Lokomotion 0:29:33 Radkonfigurationen 0:31:30 Mecanum-Antrieb 0:32:51 Aktuatoren 0:33:24 Fluidscher Antrieb 0:33:58 Muskelartiger Antrieb 0:35:41 Elktrischer Antrieb 0:35:57 Funktionsweise Elektromotor 0:37:12 Sensoren 0:41:49 Robotermodellierung 0:43:31 Geometrische Modellierung 0:44:23 Geometrisches Modell 0:45:45 Kinematisches Modell 0:50:46 Kinematisches Modell 0:52:51 Dynamisches Model
…
continue reading
16 episodes
Tous les épisodes
×1 16: Kognitive Systeme, Vorlesung, SS 2017, 24.07.2017 1:15:18
1:15:18
Lire Plus Tard
Lire Plus Tard
Des listes
J'aime
Aimé
1:15:1816 | 0:00:00 Starten 0:02:06 Überblick 0:02:12 Interaktion in der Merkmalsauswahl 0:06:59 Ausblick Aktivitätserkennung 0:07:53 Prinzip: Programmieren durch Demonstration 0:08:35 Sensoren zur Handlungsbeobachtung 0:09:56 Zyklus- Programmieren durch Vormachen 0:12:17 Constraint Representation 0:13:57 Bewegungsbeispiele 0:15:10 Motions: Automatic model refinement 2 0:15:54 Strategy Learning 0:16:49 Motions: Preminary Model generation 0:18:08 Ansatz zu generativen Lernzyklen 0:23:03 Kognitive Systemarchitektur 0:25:47 Autonomes Lernen von Skills 0:27:17 Lernen von Onthologien und Relationen 0:30:06 Forschungsfelder im Human Brain Project 0:40:36 Vision of Neurorobotics 0:43:37 Why Linking Brains to Robots? 0:50:00 Ansatz: Werkzeuge und Methoden 0:56:11 Technology for Neuronal Robot Controls 1:05:32 Manipulation and grasping: arm motion 1:13:05 Future development of the NRP…
1 15: Kognitive Systeme, Vorlesung, SS 2017, 17.07.2017 1:24:37
1:24:37
Lire Plus Tard
Lire Plus Tard
Des listes
J'aime
Aimé
1:24:3715 | 0:00:00 Starten 0:00:10 Robotik 0:01:22 Überblick 0:01:57 Greifen von Alltagsobjekten 0:04:25 Planung von Greifoperationen 0:04:52 Griffklassen 0:06:47 Cutkosky-Griffhierarchie 0:08:01 Bewegungstypen 0:12:36 Griffgenerierung: Planungsschritte 0:14:00 Griffgenerierung: Nebenbedingungen 0:18:10 Wie generiert man ""gute"" Griffe? 0:19:44 Ausweg: Griffe im Greifsimulator generieren 0:21:37 Heuristiken für Griffkandidatenerzeugung I 0:22:35 Heuristiken für Griffkandidatenerzeugung II 0:23:02 Heuristiken für Griffkandidatenerzeugung III 0:23:56 Heuristiken für Griffkandidatenerzeugung IV 0:25:02 Greifplanung im Simulator 0:25:43 Gütemaß für Stabilität: Kraftschluss 0:26:55 Interaktive Exploration und Lernen 0:29:59 Motivation für Lernen aus Beobachtung 0:33:33 Lösungskonzept zur Handlungsbeobachtung 0:35:51 Eigenschaften der Handlungserkennung 0:36:45 Durchführung der Erkennung 0:39:19 Beispielszenen 0:39:32 Modellierung von Bewegungsmerkmalen 0:40:35 Verfahren zur Merkmalsexploration 0:41:36 Merkmalsauswahl 0:42:19 Schema der Merkmalsauswahl 0:43:02 Interaktion in der Merkmalsauswahl 0:44:48 Ergebnisse Merkmalsexploration 0:46:20 Ergebnisse Merkmalsauswahl 0:47:18 Ergebnisse Klassifikation 0:48:32 Ausblick Aktivitätserkennung 0:51:49 Prinzip: Programmieren durch Demonstration 0:52:58 Natürliches Programmieren durch Vormachen 0:53:52 Sensoren zur Handlungsbeobachtung 0:55:22 Zyklus - Programmieren durch Vormachen 0:57:37 Constraint Representation 1:00:50 Planungsmodell 1:02:54 Lernen von Suchheuristiken 1:05:08 Bewegungsbeispiele 1:06:12 Motions: Automatic model refinement II 1:09:13 Strategy Learning 1:10:24 Motions: Manipulation strategies 1:10:27 Motions: Programming method 1:10:50 Motions: Preliminary Model generation 1:11:21 Motions: Correspondence Problem 1:12:06 Generativer Lernzyklus 1:17:26 Kognitive Systemarchitektur 1:18:52 Struktural Bootstrapping von OACs 1:20:08 Autonomes Lernen von Skills 1:20:47 Lernen von Onthologien und Relationen Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft. Lehrinhalt: Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft.…
1 14: Kognitive Systeme, Vorlesung, SS 2017, 12.07.2017 1:18:14
1:18:14
Lire Plus Tard
Lire Plus Tard
Des listes
J'aime
Aimé
1:18:1414 | 0:00:00 Starten 0:01:34 Überblick 0:02:36 Einführung 0:14:57 Beispiel: Roboter ""ARMAR-|||"" 0:16:36 Gelenktypen 0:18:31 Arbeitsraum 0:24:25 Beispiele für Arbeitsräume 0:25:41 Paralleler Roboter 0:28:11 Kommerzielle Robotertypen 0:29:06 Mobile Systeme, Lokomotion 0:29:33 Radkonfigurationen 0:31:30 Mecanum-Antrieb 0:32:51 Aktuatoren 0:33:24 Fluidscher Antrieb 0:33:58 Muskelartiger Antrieb 0:35:41 Elktrischer Antrieb 0:35:57 Funktionsweise Elektromotor 0:37:12 Sensoren 0:41:49 Robotermodellierung 0:43:31 Geometrische Modellierung 0:44:23 Geometrisches Modell 0:45:45 Kinematisches Modell 0:50:46 Kinematisches Modell 0:52:51 Dynamisches Model…
1 13: Kognitive Systeme, Vorlesung, SS 2017, 10.07.2017 1:28:22
1:28:22
Lire Plus Tard
Lire Plus Tard
Des listes
J'aime
Aimé
1:28:2213 | 0:00:00 Starten 0:00:10 Wissen und Planung II 0:01:30 Kurze Wiederholung 0:03:11 Repräsentation von Plänen 0:04:31 STRIPS 0:13:19 ADL 0:16:56 Planungsstrategien 0:24:10 A* - Suche 0:27:55 Partial-Order-Planning 0:38:28 Planungsgraphen 0:43:52 Umweltmodell 0:50:47 Objektmodellierung 0:52:41 Kantenmodelle 0:54:17 Oberflächenmodelle 0:55:07 Volumenmodelle 0:56:43 Begrenzungsflächen 0:57:11 Constructive Solid Geometry (CSG) 0:58:44 Umgebungskarten 1:02:03 Dimensionalität 1:03:29 Repräsentation von Hindernisse, Bahnplanungsmethoden 1:03:40 Übersicht 1:08:19 Freiraum und Hindernisraum 1:10:45 Konfigurationsraum 1:11:28 Polygonzerlegung 1:14:21 Sichtgraphen 1:16:10 Gitter 1:19:16 Quadtrees 1:22:32 Voronoi-Diagramme 1:24:01 Potentialfeldmethode Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft. Lehrinhalt: Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft.…
1 12: Kognitive Systeme, Vorlesung, SS 2017, 05.07.2017 1:20:56
1:20:56
Lire Plus Tard
Lire Plus Tard
Des listes
J'aime
Aimé
1:20:5612 | 0:00:00 Starten 0:00:12 Wissen und Planung I 0:02:40 Gesichtserkennung 0:05:48 Historischer Überblick 0:08:23 Gesichtserkennung vs. Objekterkennung 0:14:59 Merkmalsbasierte Gesichtserkennung 0:19:46 Klassifikation 0:21:04 Überblick 0:33:07 Einführung 0:49:03 Wissensrepräsentation: Grundlagen 0:54:38 Wissensrepräsentation: Logik 1:02:03 Aussagenlogik 1:06:10 Logik: Resolutionsalgorithmus 1:07:23 Logik: Horn-Klauseln 1:08:53 Logik: DPLL 1:09:52 Prädikatenlogik 1:12:10 Planungssprachen 1:13:29 STRIPS…
1 11: Kognitive Systeme, Vorlesung, SS 2017, 03.07.2017 1:25:52
1:25:52
Lire Plus Tard
Lire Plus Tard
Des listes
J'aime
Aimé
1:25:5211 | 0:00:00 Starten 0:00:37 3D-Bildverarbeitung 0:01:30 Geometrische 3D-Transformationen 0:10:32 Homogene Koordinaten 0:18:10 Quaternionen 0:31:02 Lochkamera (ideales Modell) 0:31:46 Erweiteres Kameramodell 0:39:46 Kamerakalibrierung 0:42:35 Direkte Lineare Transformation 0:43:37 Stereokonstruktion 0:47:57 Epipolargeometrie 0:53:21 Fundamentalmatrix 0:54:39 Stereo-Sehen 0:57:56 Human Motion Capture: Erfassung von Bewegungen und Handlungen des Menschen 1:02:16 Menschmodell 1:05:40 Bewegungs- und Handlungserfassung 1:08:57 Action representation 1:10:51 Perception 1:12:09 Human MMM 1:15:28 HMC mit Partikel Filter 1:22:33 HMC mit ICP 1:25:06 Gesichtserkennung…
1 10: Kognitive Systeme, Vorlesung, SS 2017, 26.06.2017 1:17:53
1:17:53
Lire Plus Tard
Lire Plus Tard
Des listes
J'aime
Aimé
1:17:5310 | 0:00:00 Starten 0:02:02 Maschinensehen 0:06:33 Sensorische Erfassung: Szene 0:07:37 Sensorische Erfassung: Situation 0:10:26 Zustandsprädikation auf Basis von Beobachtungen 0:12:29 Visual Sensing Problems 0:14:43 HDR: Image Capturing 0:16:21 Visual Feature Extraction 0:19:37 Inhalt der heutigen Vorlesung 0:27:24 Schwellwertoperationen 0:29:36 Multilevel Otsu Verfahren 0:38:26 Morphologische Operatoren 0:44:05 Opening 0:45:12 Segmentieung: Bewegung 0:47:27 Segmentierung: Region Growing 0:54:33 Segmentierung: Kanten 1:11:12 Einfache Deskriptoren 1:13:09 Kombinierte Ansätze 1:14:25 2D-Transformationen: Translation 1:15:09 Homogene Koordinaten 1:15:30 Homogene 2D-Transformationen…
1 08: Kognitive Systeme, Vorlesung, SS 2017, 14.06.2017 27:16
27:16
Lire Plus Tard
Lire Plus Tard
Des listes
J'aime
Aimé
27:1608 | 0:00:00 Starten 0:00:10 Speech 0:00:49 Die Fundamentalformel der Spracherkennung 0:13:27 Speech Recognition (Components) 0:14:51 Hidden Markov Models 0:22:04 Acoustic Modeling 0:25:17 HMM Problems and Solutions
1 09: Kognitive Systeme, Vorlesung, SS 2017, 19.06.2017 1:24:30
1:24:30
Lire Plus Tard
Lire Plus Tard
Des listes
J'aime
Aimé
1:24:3009 | 0:00:00 Starten 0:00:10 HMM Problems And Solutions 0:02:34 HMMs In Speech Recognition 0:04:42 Model Topologies 0:05:49 Forward-Backward Training for Continuous Speech 0:06:26 Discrete HHM's Vector Quantization 0:08:37 Acoustic Modeling 0:12:38 Neural Net Approaches to Pattern Classification 0:12:47 Simple NN Vowel Classification 0:13:20 HMM-DeepNN Hybrids 0:14:24 Deep Neural Net Hybrids 0:18:59 Time-Delay Neural Network (TDNN) 0:26:51 Reverberation Robust Speech Reco 0:27:08 TDNN / CNN - Waibel 1987 0:28:53 Conversational Speech 0:29:17 Convolutional Nets 0:29:46 Convolutional Nets in Image Classification 0:30:43 Mastering the Game of Go 0:32:04 Speech Recognition (System Components) 0:32:50 Dictionaries 0:39:06 Language Models: Grammar Based 0:40:39 Speech Recognition 0:42:16 A Word Guessing Game 0:43:00 Bigrams and Trigrams 0:44:54 The Bag of Words Experiment 0:45:10 Language Models: N-Grams 0:46:56 Objective Estimation of Language Model Quality 0:55:21 The Perplexity of a Language Model 0:59:36 Recurrent Neural Nets 1:00:25 Elman Networks - Simple RNN 1:01:05 Jordan Networks - Simple RNN 1:01:43 Backpropagation Through Time 1:02:11 Modeling Sequences with RNN 1:02:54 Measuring Recognizer Performance 1:04:37 Factors Affecting Recognizer Performance 1:04:49 How Good Does it Have to be? 1:06:35 Voice Agents 1:11:17 Natural Language Processing 1:12:11 Machine Translation: Approaches 1:15:17 Statistical Machine Translation 1:18:47 RNN Encoder - Decoder 1:19:42 Neural Machine Translation 1:20:37 RNN Encoder-Decoder Architecture 1:21:05 Attention Mechanism in the Recurrent Decoder 1:21:28 BiRNN Encoder-Decoder with Attention Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft. Lehrinhalt: Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft.…
1 07: Kognitive Systeme, Vorlesung, SS 2017, 31.05.2017 1:09:10
1:09:10
Lire Plus Tard
Lire Plus Tard
Des listes
J'aime
Aimé
1:09:1007 | 0:00:00 Starten 0:00:10 Lecture Demos 0:00:42 Spectogram Controls 0:09:49 Speech: State-of-the-Art 0:14:09 Sloppy Speech 0:16:47 Speech Recognition (System Overview) 0:20:21 Voiced and Unvoiced Phonemes 0:21:35 Analog to Digital 0:21:50 Front End Processing 0:23:49 Linear Sequence Alignment 0:25:15 Problem with Linear Alignment 0:28:08 Speech Recognition (Components) 0:30:50 Spectogram 0:32:04 Markov Models 0:36:18 Single Fair Coin 0:37:23 Discrete Observation HMM 0:40:54 Hidden Markov Models 0:45:25 Acoustic Modeling 0:48:13 HMM Problems and Solutions 0:51:35 Evaluation 0:54:08 The Forward Algorithm 0:58:58 Forward Trellis 1:04:39 The Backward Algorithm 1:05:00 Decoding 1:08:35 Viterbi Trellis…
1 06: Kognitive Systeme, Vorlesung, SS 2017, 29.05.2017 1:21:53
1:21:53
Lire Plus Tard
Lire Plus Tard
Des listes
J'aime
Aimé
1:21:5306 | 0:00:00 Starten 0:00:22 Neural Networks 0:00:29 The brain is: 0:03:19 Von Neumann Computer - Neural Computation 0:14:34 Coding of Speach: ""Bottleneck Features"" 0:15:34 Using Neural Nets 0:16:56 Neural Models 0:17:30 Apllications 0:19:15 Advanced Neural Models 0:19:29 Time Varying Patterns 0:24:02 Classical Human - Computer Interaction 0:25:16 Better Human-Machine Interaction 0:26:29 Interpreting Human Communication 0:27:46 Humans and Computers 0:29:38 Speech 0:30:05 A Few Related Sciences 0:33:01 Anatomy of Speech Production 0:37:17 Speech Production 0:45:04 Convolution 0:45:32 Trandfer Functions of the Diffrent Components of Speech Production 0:50:36 Diffrent Vocal Tract Shapes 0:52:39 Formants 0:57:43 Spektogramme 1:04:00 Vokale im Zeitbereich 1:05:11 Consonants 1:07:01 Vocal Tract Shapes of Consonants Fricatives 1:07:48 Vocal Tract Model of Speech 1:12:31 Dimensions of Difficulty 1:19:38 Speech: State-of-the Art…
1 05: Kognitive Systeme, Vorlesung, SS 2017, 24.05.2017 1:22:31
1:22:31
Lire Plus Tard
Lire Plus Tard
Des listes
J'aime
Aimé
1:22:3105 | 0:00:00 Starten 0:00:06 Decision Function g(x) 0:03:26 Perceptron - Nonlinearities 0:04:11 The Perceptron 0:05:44 Linear Discriminant Functions 0:06:56 Perceptron 0:08:36 Perceptron Criterion Function 0:15:43 Linearly Separable Samples and the Solution Region in Weight Space 0:20:04 Finding a Solution Region by Gradient Search 0:24:40 Perceptron Learning 0:34:10 Variations 0:35:07 Effect of the Margin on the Solution Region 0:35:35 Nonseparable behavior 0:42:32 Network of Neurons/ Multi-Layer Perceptron 0:45:21 Connectionist Units 0:48:53 Training the MLP by Error Back-Propagation 0:53:23 Backpropagation of Error 0:56:19 Derivative dy/dx 1:05:41 Neural Network Demo…
1 04: Kognitive Systeme, Vorlesung, SS 2017, 22.05.2017 1:25:07
1:25:07
Lire Plus Tard
Lire Plus Tard
Des listes
J'aime
Aimé
1:25:0704 | 0:00:00 Starten 0:05:02 Non-Parametric Techniques: Parzen Windows 0:10:45 K-Nearest Neighbors (KNN) 0:19:28 KNN-Classifier: Problem 0:20:50 Decision Function g(x) 0:24:35 Linear Discriminant Functions 0:35:49 Unsupervised Learning 0:38:42 Unsupervised Classification 0:58:31 Clustering 1:19:18 Linear Discriminant Functions 1:21:08 Perceptron Criterion Function…
1 03: Kognitive Systeme, Vorlesung, SS 2017, 17.05.2017 1:16:01
1:16:01
Lire Plus Tard
Lire Plus Tard
Des listes
J'aime
Aimé
1:16:0103 | 0:00:00 Starten 0:00:11 Classification Problem 0:07:56 Bayes Decision Theory 0:20:49 Classifier Design in Practice 0:24:59 GaussianClassifier 0:51:12 Principal Component Analysis (PCA) 1:07:28 Minimum Error Rate Classification 1:11:38 Non-Parametric Techniques: Parzen Windows
1 02: Kognitive Systeme, Vorlesung, SS 2017, 15.05.2017 1:25:06
1:25:06
Lire Plus Tard
Lire Plus Tard
Des listes
J'aime
Aimé
1:25:0602 | 0:00:00 Starten 0:01:23 Abtasten 0:01:52 Digitalisierung von Signalen 0:02:17 Quantisierung 0:02:31 Faltung 0:03:04 Idee der Fourier Transformation und Fourier-Reihen 0:03:41 Fourier Reihenzerlegung 0:04:54 Fourierreihen für Rechteckfunktion 0:05:18 Fouriertransformation 0:08:01 Eigenschaften von Fouriertransformierten 0:10:53 Faltung 0:18:49 Zusammenhänge 0:21:45 Typische Fouriertransformationen 1 0:25:11 Fourier Reihen und Transformationen 0:32:38 Typische Fouriertransformationen 2 0:35:15 Von kontinuierlich nach diskret 0:37:59 Aliasing 0:41:17 Abtast/Sampling Theorem 0:42:23 Abtasten in der Praxis 0:43:11 Beheben von Aliasing 0:45:06 Korrelation 0:50:41 Schablonenanpassung (Template Matching) 0:56:00 Klassifikation 1+2 1:09:45 Classification Problem 1:14:42 Bayes Decision Theory 1:19:37 Two classes case: 1:20:54 Hypothetical class-conditional probability density function 1:21:22 A posteriori probabilities 1:22:13 Examples Decision boundraries…
Bienvenue sur Lecteur FM!
Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.