Artwork

Contenu fourni par Timothy Nguyen. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Timothy Nguyen ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.
Player FM - Application Podcast
Mettez-vous hors ligne avec l'application Player FM !

Grant Sanderson (3Blue1Brown) | Unsolvability of the Quintic

2:19:33
 
Partager
 

Manage episode 343970510 series 3389153
Contenu fourni par Timothy Nguyen. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Timothy Nguyen ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

Grant Sanderson is a mathematician who is the author of the YouTube channel “3Blue1Brown”, viewed by millions for its beautiful blend of visual animation and mathematical pedagogy. His channel covers a wide range of mathematical topics, which to name a few include calculus, quaternions, epidemic modeling, and artificial neural networks. Grant received his bachelor's degree in mathematics from Stanford University and has worked with a variety of mathematics educators and outlets, including Khan Academy, The Art of Problem Solving, MIT OpenCourseWare, Numberphile, and Quanta Magazine.

In this episode, we discuss the famous unsolvability of quintic polynomials: there exists no formula, consisting only of finitely many arithmetic operations and radicals, for expressing the roots of a general fifth degree polynomial in terms of the polynomial's coefficients. The standard proof that is taught in abstract algebra courses uses the machinery of Galois theory. Instead of following that route, Grant and I proceed in barebones style along (somewhat) historical lines by first solving quadratics, cubics, and quartics. Along the way, we present the insights obtained by Lagrange that motivate a very natural combinatorial question, which contains the germs of modern group theory and Galois theory and whose answer suggests that the quintic is unsolvable (later confirmed through the work of Abel and Galois). We end with some informal discussions about Abel's proof and the topological proof due to Vladimir Arnold.

Patreon: https://www.patreon.com/timothynguyen

Part I. Introduction

  • 00:00:Introduction
  • 00:52: How did you get interested in math?
  • 06:30: Future of math pedagogy and AI
  • 12:03: Overview. How Grant got interested in unsolvability of the quintic
  • 15:26: Problem formulation
  • 17:42: History of solving polynomial equations
  • 19:50: Po-Shen Loh

Part II. Working Up to the Quintic

  • 28:06: Quadratics
  • 34:38 : Cubics
  • 37:20: Viete’s formulas
  • 48:51: Math duels over solving cubics: del Ferro, Fiorre, Tartaglia, Cardano, Ferrari
  • 53:24: Prose poetry of solving cubics
  • 54:30: Cardano’s Formula derivation
  • 1:03:22: Resolvent
  • 1:04:10: Why exactly 3 roots from Cardano’s formula?

Part III. Thinking More Systematically

  • 1:12:25: Takeaways and Lagrange’s insight into why quintic might be unsolvable
  • 1:17:20: Origins of group theory?
  • 1:23:29: History’s First Whiff of Galois Theory
  • 1:25:24: Fundamental Theorem of Symmetric Polynomials
  • 1:30:18: Solving the quartic from the resolvent
  • 1:40:08: Recap of overall logic

Part IV. Unsolvability of the Quintic

  • 1:52:30: S_5 and A_5 group actions
  • 2:01:18: Lagrange’s approach fails!
  • 2:04:01: Abel’s proof
  • 2:06:16: Arnold’s Topological Proof
  • 2:18:22: Closing Remarks

Further Reading on Arnold's Topological Proof of Unsolvability of the Quintic:

  1. L. Goldmakher. https://web.williams.edu/Mathematics/lg5/394/ArnoldQuintic.pdf
  2. B. Katz. https://www.youtube.com/watch?v=RhpVSV6iCko

Twitter: @iamtimnguyen

Webpage: http://www.timothynguyen.org

  continue reading

22 episodes

Artwork
iconPartager
 
Manage episode 343970510 series 3389153
Contenu fourni par Timothy Nguyen. Tout le contenu du podcast, y compris les épisodes, les graphiques et les descriptions de podcast, est téléchargé et fourni directement par Timothy Nguyen ou son partenaire de plateforme de podcast. Si vous pensez que quelqu'un utilise votre œuvre protégée sans votre autorisation, vous pouvez suivre le processus décrit ici https://fr.player.fm/legal.

Grant Sanderson is a mathematician who is the author of the YouTube channel “3Blue1Brown”, viewed by millions for its beautiful blend of visual animation and mathematical pedagogy. His channel covers a wide range of mathematical topics, which to name a few include calculus, quaternions, epidemic modeling, and artificial neural networks. Grant received his bachelor's degree in mathematics from Stanford University and has worked with a variety of mathematics educators and outlets, including Khan Academy, The Art of Problem Solving, MIT OpenCourseWare, Numberphile, and Quanta Magazine.

In this episode, we discuss the famous unsolvability of quintic polynomials: there exists no formula, consisting only of finitely many arithmetic operations and radicals, for expressing the roots of a general fifth degree polynomial in terms of the polynomial's coefficients. The standard proof that is taught in abstract algebra courses uses the machinery of Galois theory. Instead of following that route, Grant and I proceed in barebones style along (somewhat) historical lines by first solving quadratics, cubics, and quartics. Along the way, we present the insights obtained by Lagrange that motivate a very natural combinatorial question, which contains the germs of modern group theory and Galois theory and whose answer suggests that the quintic is unsolvable (later confirmed through the work of Abel and Galois). We end with some informal discussions about Abel's proof and the topological proof due to Vladimir Arnold.

Patreon: https://www.patreon.com/timothynguyen

Part I. Introduction

  • 00:00:Introduction
  • 00:52: How did you get interested in math?
  • 06:30: Future of math pedagogy and AI
  • 12:03: Overview. How Grant got interested in unsolvability of the quintic
  • 15:26: Problem formulation
  • 17:42: History of solving polynomial equations
  • 19:50: Po-Shen Loh

Part II. Working Up to the Quintic

  • 28:06: Quadratics
  • 34:38 : Cubics
  • 37:20: Viete’s formulas
  • 48:51: Math duels over solving cubics: del Ferro, Fiorre, Tartaglia, Cardano, Ferrari
  • 53:24: Prose poetry of solving cubics
  • 54:30: Cardano’s Formula derivation
  • 1:03:22: Resolvent
  • 1:04:10: Why exactly 3 roots from Cardano’s formula?

Part III. Thinking More Systematically

  • 1:12:25: Takeaways and Lagrange’s insight into why quintic might be unsolvable
  • 1:17:20: Origins of group theory?
  • 1:23:29: History’s First Whiff of Galois Theory
  • 1:25:24: Fundamental Theorem of Symmetric Polynomials
  • 1:30:18: Solving the quartic from the resolvent
  • 1:40:08: Recap of overall logic

Part IV. Unsolvability of the Quintic

  • 1:52:30: S_5 and A_5 group actions
  • 2:01:18: Lagrange’s approach fails!
  • 2:04:01: Abel’s proof
  • 2:06:16: Arnold’s Topological Proof
  • 2:18:22: Closing Remarks

Further Reading on Arnold's Topological Proof of Unsolvability of the Quintic:

  1. L. Goldmakher. https://web.williams.edu/Mathematics/lg5/394/ArnoldQuintic.pdf
  2. B. Katz. https://www.youtube.com/watch?v=RhpVSV6iCko

Twitter: @iamtimnguyen

Webpage: http://www.timothynguyen.org

  continue reading

22 episodes

Tous les épisodes

×
 
Loading …

Bienvenue sur Lecteur FM!

Lecteur FM recherche sur Internet des podcasts de haute qualité que vous pourrez apprécier dès maintenant. C'est la meilleure application de podcast et fonctionne sur Android, iPhone et le Web. Inscrivez-vous pour synchroniser les abonnements sur tous les appareils.

 

Guide de référence rapide

Écoutez cette émission pendant que vous explorez
Lire