2.3 A Mixture of Experts Latent Position Cluster Model for Social Network Data (Claire Gormley)

49:47
 
Partager
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on April 19, 2019 09:37 (1+ y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 188707048 series 1600644
Par Universite Paris 1 Pantheon-Sorbonne, découvert par Player FM et notre communauté - Le copyright est détenu par l'éditeur, non par Player F, et l'audio est diffusé directement depuis ses serveurs. Appuyiez sur le bouton S'Abonner pour suivre les mises à jour sur Player FM, ou collez l'URL du flux dans d'autre applications de podcasts.
Social network data represent the interactions between a group of social actors. Interactions between colleagues and friendship networks are typical examples of such data. The latent space model for social network data locates each actor in a network in a latent (social) space and models the probability of an interaction between two actors as a function of their locations. The latent position cluster model extends the latent space model to deal with network data in which clusters of actors exist ? actor locations are drawn from a finite mixture model, each component of which represents a cluster of actors. A mixture of experts model builds on the structure of a mixture model by taking account of both observations and associated covariates when modeling a heterogeneous population. Herein, a mixture of experts extension of the latent position cluster model is developed. The mixture of experts framework allows covariates to enter the latent position cluster model in a number of ways, yielding different model interpretations. Estimates of the model parameters are derived in a Bayesian framework using a Markov Chain Monte Carlo algorithm. The algorithm is generally computationally expensive ? surrogate proposal distributions which shadow the target distributions are derived, reducing the computational burden. The methodology is demonstrated through an illustrative example detailing relations between a group of lawyers in the USA.

12 episodes