2.2 Visualization of graphs by organized clustering : application to social and biological networks (Nathalie Villa-Vialaneix)


Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on April 19, 2019 09:37 (1+ y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 188707047 series 1600644
Par Universite Paris 1 Pantheon-Sorbonne, découvert par Player FM et notre communauté - Le copyright est détenu par l'éditeur, non par Player F, et l'audio est diffusé directement depuis ses serveurs. Appuyiez sur le bouton S'Abonner pour suivre les mises à jour sur Player FM, ou collez l'URL du flux dans d'autre applications de podcasts.
A growing number of applicative fields generate data that are pairwise relations between the objects under study instead of attributes associated to every object : social networks (relations between persons), biology (interactions between genes, proteins), www (relations between websites or blogs), marketing (relations between customers and services). To help understanding and interpreting such data, specific data analysis tools have been extended from the classical multivariate data analysis : visualization, clustering, classification This talk deals with an exploratory methodology : a common way to help understanding a graph is to cluster its vertices into relevant groups and then to represent the (simplified) graph of clusters. As will be explained, these two objectives (clustering and representation) can be somehow contradictory. Two approaches related to self-organizing maps will be presented and compared on real-world data to solve this issue. This is a joint work with Fabrice Rossi (LTCI, Télécom ParisTech).

12 episodes